MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. C70620 Copper-nickel

7010 aluminum belongs to the aluminum alloys classification, while C70620 copper-nickel belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is C70620 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 520 to 590
300 to 570

Thermal Properties

Latent Heat of Fusion, J/g 380
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 630
1120
Melting Onset (Solidus), °C 480
1060
Specific Heat Capacity, J/kg-K 860
390
Thermal Conductivity, W/m-K 150
49
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1120
300

Common Calculations

Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 47 to 54
9.3 to 18
Strength to Weight: Bending, points 47 to 52
11 to 17
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 22 to 26
10 to 20

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 1.5 to 2.0
86.5 to 90
Iron (Fe), % 0 to 0.15
1.0 to 1.8
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.050
9.0 to 11
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.12
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0 to 0.5
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0
0 to 0.5