MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. C71580 Copper-nickel

7010 aluminum belongs to the aluminum alloys classification, while C71580 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 3.9 to 6.8
40
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
51
Shear Strength, MPa 300 to 340
230
Tensile Strength: Ultimate (UTS), MPa 520 to 590
330
Tensile Strength: Yield (Proof), MPa 410 to 540
110

Thermal Properties

Latent Heat of Fusion, J/g 380
230
Maximum Temperature: Mechanical, °C 200
260
Melting Completion (Liquidus), °C 630
1180
Melting Onset (Solidus), °C 480
1120
Specific Heat Capacity, J/kg-K 860
400
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
41
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.3
5.1
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
47
Stiffness to Weight: Axial, points 13
8.5
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 47 to 54
10
Strength to Weight: Bending, points 47 to 52
12
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 22 to 26
11

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 1.5 to 2.0
65.5 to 71
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.3
Nickel (Ni), % 0 to 0.050
29 to 33
Silicon (Si), % 0 to 0.12
0
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0 to 0.050
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0
0 to 0.5