MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. C87900 Brass

7010 aluminum belongs to the aluminum alloys classification, while C87900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.9 to 6.8
25
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 520 to 590
480
Tensile Strength: Yield (Proof), MPa 410 to 540
240

Thermal Properties

Latent Heat of Fusion, J/g 380
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 630
930
Melting Onset (Solidus), °C 480
900
Specific Heat Capacity, J/kg-K 860
390
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
15
Electrical Conductivity: Equal Weight (Specific), % IACS 120
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
270
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 45
20
Strength to Weight: Axial, points 47 to 54
17
Strength to Weight: Bending, points 47 to 52
17
Thermal Diffusivity, mm2/s 58
37
Thermal Shock Resistance, points 22 to 26
16

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 1.5 to 2.0
63 to 69.2
Iron (Fe), % 0 to 0.15
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.15
Nickel (Ni), % 0 to 0.050
0 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.12
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
30 to 36
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0