MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. C96400 Copper-nickel

7010 aluminum belongs to the aluminum alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 3.9 to 6.8
25
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
51
Tensile Strength: Ultimate (UTS), MPa 520 to 590
490
Tensile Strength: Yield (Proof), MPa 410 to 540
260

Thermal Properties

Latent Heat of Fusion, J/g 380
240
Maximum Temperature: Mechanical, °C 200
260
Melting Completion (Liquidus), °C 630
1240
Melting Onset (Solidus), °C 480
1170
Specific Heat Capacity, J/kg-K 860
400
Thermal Conductivity, W/m-K 150
28
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.3
5.9
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 47 to 54
15
Strength to Weight: Bending, points 47 to 52
16
Thermal Diffusivity, mm2/s 58
7.8
Thermal Shock Resistance, points 22 to 26
17

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 1.5 to 2.0
62.3 to 71.3
Iron (Fe), % 0 to 0.15
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0 to 0.050
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.12
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0
0 to 0.5