MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. N08221 Nickel

7010 aluminum belongs to the aluminum alloys classification, while N08221 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is N08221 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.9 to 6.8
34
Fatigue Strength, MPa 160 to 190
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 300 to 340
410
Tensile Strength: Ultimate (UTS), MPa 520 to 590
610
Tensile Strength: Yield (Proof), MPa 410 to 540
270

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 860
460
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
44
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1120
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
21
Strength to Weight: Bending, points 47 to 52
19
Thermal Shock Resistance, points 22 to 26
16

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0 to 0.2
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.050
20 to 22
Copper (Cu), % 1.5 to 2.0
1.5 to 3.0
Iron (Fe), % 0 to 0.15
22 to 33.9
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.5
Nickel (Ni), % 0 to 0.050
39 to 46
Silicon (Si), % 0 to 0.12
0 to 0.050
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0.6 to 1.0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0