MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. N08700 Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.9 to 6.8
32
Fatigue Strength, MPa 160 to 190
210
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 300 to 340
410
Tensile Strength: Ultimate (UTS), MPa 520 to 590
620
Tensile Strength: Yield (Proof), MPa 410 to 540
270

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.0
Embodied Energy, MJ/kg 150
82
Embodied Water, L/kg 1120
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
160
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
21
Strength to Weight: Bending, points 47 to 52
20
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 22 to 26
14

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.050
19 to 23
Copper (Cu), % 1.5 to 2.0
0 to 0.5
Iron (Fe), % 0 to 0.15
42 to 52.7
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0 to 0.050
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0