MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. N08800 Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while N08800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.9 to 6.8
4.5 to 34
Fatigue Strength, MPa 160 to 190
150 to 390
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 300 to 340
340 to 580
Tensile Strength: Ultimate (UTS), MPa 520 to 590
500 to 1000
Tensile Strength: Yield (Proof), MPa 410 to 540
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 480
1360
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.3
5.3
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1120
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
96 to 1740
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
18 to 35
Strength to Weight: Bending, points 47 to 52
18 to 28
Thermal Diffusivity, mm2/s 58
3.0
Thermal Shock Resistance, points 22 to 26
13 to 25

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0.15 to 0.6
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.050
19 to 23
Copper (Cu), % 1.5 to 2.0
0 to 0.75
Iron (Fe), % 0 to 0.15
39.5 to 50.7
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0 to 0.050
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.12
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0.15 to 0.6
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0