MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. N12160 Nickel

7010 aluminum belongs to the aluminum alloys classification, while N12160 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.9 to 6.8
45
Fatigue Strength, MPa 160 to 190
230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 300 to 340
500
Tensile Strength: Ultimate (UTS), MPa 520 to 590
710
Tensile Strength: Yield (Proof), MPa 410 to 540
270

Thermal Properties

Latent Heat of Fusion, J/g 380
360
Maximum Temperature: Mechanical, °C 200
1060
Melting Completion (Liquidus), °C 630
1330
Melting Onset (Solidus), °C 480
1280
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
90
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
260
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
24
Strength to Weight: Bending, points 47 to 52
22
Thermal Diffusivity, mm2/s 58
2.8
Thermal Shock Resistance, points 22 to 26
19

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.050
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 0 to 0.15
0 to 3.5
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0