MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. S30600 Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.9 to 6.8
45
Fatigue Strength, MPa 160 to 190
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 300 to 340
430
Tensile Strength: Ultimate (UTS), MPa 520 to 590
610
Tensile Strength: Yield (Proof), MPa 410 to 540
270

Thermal Properties

Latent Heat of Fusion, J/g 380
350
Maximum Temperature: Mechanical, °C 200
950
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 480
1330
Specific Heat Capacity, J/kg-K 860
490
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 47 to 54
22
Strength to Weight: Bending, points 47 to 52
21
Thermal Diffusivity, mm2/s 58
3.7
Thermal Shock Resistance, points 22 to 26
14

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.018
Chromium (Cr), % 0 to 0.050
17 to 18.5
Copper (Cu), % 1.5 to 2.0
0 to 0.5
Iron (Fe), % 0 to 0.15
58.9 to 65.3
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.050
14 to 15.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.12
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0