MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. S44735 Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.9 to 6.8
21
Fatigue Strength, MPa 160 to 190
300
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
82
Shear Strength, MPa 300 to 340
390
Tensile Strength: Ultimate (UTS), MPa 520 to 590
630
Tensile Strength: Yield (Proof), MPa 410 to 540
460

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 860
480
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
21
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1120
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
26
Strength to Weight: Axial, points 47 to 54
23
Strength to Weight: Bending, points 47 to 52
21
Thermal Shock Resistance, points 22 to 26
20

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
28 to 30
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 0 to 0.15
60.7 to 68.4
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0 to 0.050
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0.2 to 1.0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0