MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. ACI-ASTM CC50 Steel

7020 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CC50 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is ACI-ASTM CC50 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
210
Elastic (Young's, Tensile) Modulus, GPa 70
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 190 to 390
430

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 610
1370
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1150
170

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
26
Strength to Weight: Axial, points 18 to 37
16
Strength to Weight: Bending, points 25 to 41
17
Thermal Diffusivity, mm2/s 59
4.5
Thermal Shock Resistance, points 8.3 to 17
14

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0.1 to 0.35
26 to 30
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
62.9 to 74
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.0
Nickel (Ni), % 0
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0