MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN 1.1165 Cast Steel

7020 aluminum belongs to the aluminum alloys classification, while EN 1.1165 cast steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN 1.1165 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.4 to 14
11 to 20
Fatigue Strength, MPa 110 to 130
200 to 380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 190 to 390
600 to 780
Tensile Strength: Yield (Proof), MPa 120 to 310
290 to 620

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
230 to 1010
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18 to 37
21 to 28
Strength to Weight: Bending, points 25 to 41
20 to 24
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 8.3 to 17
19 to 25

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0.25 to 0.32
Chromium (Cr), % 0.1 to 0.35
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
97.2 to 98.6
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.35
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants