MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN 1.3975 Stainless Steel

7020 aluminum belongs to the aluminum alloys classification, while EN 1.3975 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN 1.3975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.4 to 14
27
Fatigue Strength, MPa 110 to 130
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 190 to 390
660
Tensile Strength: Yield (Proof), MPa 120 to 310
320

Thermal Properties

Latent Heat of Fusion, J/g 380
340
Maximum Temperature: Mechanical, °C 210
910
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 610
1320
Specific Heat Capacity, J/kg-K 880
500
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.9
7.5
Embodied Carbon, kg CO2/kg material 8.3
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
150
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
26
Strength to Weight: Axial, points 18 to 37
24
Strength to Weight: Bending, points 25 to 41
22
Thermal Shock Resistance, points 8.3 to 17
15

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.1 to 0.35
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
58.2 to 65.4
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.35
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0