MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN 1.4849 Stainless Steel

7020 aluminum belongs to the aluminum alloys classification, while EN 1.4849 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN 1.4849 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
140
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.4 to 14
4.5
Fatigue Strength, MPa 110 to 130
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 190 to 390
480
Tensile Strength: Yield (Proof), MPa 120 to 310
250

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 210
1020
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 610
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.3
7.1
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
18
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18 to 37
17
Strength to Weight: Bending, points 25 to 41
17
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 8.3 to 17
11

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0.1 to 0.35
18 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
32.6 to 43.5
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
36 to 39
Niobium (Nb), % 0
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0