MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN 1.4938 Stainless Steel

7020 aluminum belongs to the aluminum alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.4 to 14
16 to 17
Fatigue Strength, MPa 110 to 130
390 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 110 to 230
540 to 630
Tensile Strength: Ultimate (UTS), MPa 190 to 390
870 to 1030
Tensile Strength: Yield (Proof), MPa 120 to 310
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 210
750
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
1050 to 1920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 18 to 37
31 to 37
Strength to Weight: Bending, points 25 to 41
26 to 29
Thermal Diffusivity, mm2/s 59
8.1
Thermal Shock Resistance, points 8.3 to 17
30 to 35

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0.1 to 0.35
11 to 12.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
80.5 to 84.8
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants