MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN 1.5525 Steel

7020 aluminum belongs to the aluminum alloys classification, while EN 1.5525 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.4 to 14
11 to 21
Fatigue Strength, MPa 110 to 130
210 to 310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 110 to 230
310 to 350
Tensile Strength: Ultimate (UTS), MPa 190 to 390
440 to 1440
Tensile Strength: Yield (Proof), MPa 120 to 310
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
50
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
240 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18 to 37
16 to 51
Strength to Weight: Bending, points 25 to 41
16 to 36
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 8.3 to 17
13 to 42

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0.1 to 0.35
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.4
97.7 to 98.9
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.35
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0