MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN 1.8967 Steel

7020 aluminum belongs to the aluminum alloys classification, while EN 1.8967 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN 1.8967 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
170
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.4 to 14
16
Fatigue Strength, MPa 110 to 130
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 110 to 230
350
Tensile Strength: Ultimate (UTS), MPa 190 to 390
570
Tensile Strength: Yield (Proof), MPa 120 to 310
340

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 210
420
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1150
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
78
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18 to 37
20
Strength to Weight: Bending, points 25 to 41
19
Thermal Diffusivity, mm2/s 59
10
Thermal Shock Resistance, points 8.3 to 17
17

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0 to 0.030
Carbon (C), % 0
0 to 0.19
Chromium (Cr), % 0.1 to 0.35
0.35 to 0.85
Copper (Cu), % 0 to 0.2
0.2 to 0.6
Iron (Fe), % 0 to 0.4
94.6 to 99
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.35
0 to 0.55
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.25
0 to 0.12
Vanadium (V), % 0
0 to 0.14
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0 to 0.17
Residuals, % 0 to 0.15
0