MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN 2.4878 Nickel

7020 aluminum belongs to the aluminum alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.4 to 14
13 to 17
Fatigue Strength, MPa 110 to 130
400 to 410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
78
Shear Strength, MPa 110 to 230
750 to 760
Tensile Strength: Ultimate (UTS), MPa 190 to 390
1210 to 1250
Tensile Strength: Yield (Proof), MPa 120 to 310
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 210
1030
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 610
1320
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
1370 to 1540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18 to 37
41 to 42
Strength to Weight: Bending, points 25 to 41
31
Thermal Diffusivity, mm2/s 59
2.8
Thermal Shock Resistance, points 8.3 to 17
37 to 39

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
1.2 to 1.6
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0
0.030 to 0.070
Chromium (Cr), % 0.1 to 0.35
23 to 25
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 1.0
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.25
2.8 to 3.2
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0.030 to 0.070
Residuals, % 0 to 0.15
0

Comparable Variants