MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. EN AC-47000 Aluminum

Both 7020 aluminum and EN AC-47000 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
60
Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 8.4 to 14
1.7
Fatigue Strength, MPa 110 to 130
68
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 190 to 390
180
Tensile Strength: Yield (Proof), MPa 120 to 310
97

Thermal Properties

Latent Heat of Fusion, J/g 380
570
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 610
570
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
65
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 47
54
Strength to Weight: Axial, points 18 to 37
19
Strength to Weight: Bending, points 25 to 41
27
Thermal Diffusivity, mm2/s 59
55
Thermal Shock Resistance, points 8.3 to 17
8.3

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
82.1 to 89.5
Chromium (Cr), % 0.1 to 0.35
0 to 0.1
Copper (Cu), % 0 to 0.2
0 to 1.0
Iron (Fe), % 0 to 0.4
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 1.0 to 1.4
0 to 0.35
Manganese (Mn), % 0.050 to 0.5
0.050 to 0.55
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.35
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 4.0 to 5.0
0 to 0.55
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0
0 to 0.25