MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. Grade CW6M Nickel

7020 aluminum belongs to the aluminum alloys classification, while grade CW6M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is grade CW6M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 8.4 to 14
29
Fatigue Strength, MPa 110 to 130
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 190 to 390
560
Tensile Strength: Yield (Proof), MPa 120 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 210
970
Melting Completion (Liquidus), °C 650
1530
Melting Onset (Solidus), °C 610
1470
Specific Heat Capacity, J/kg-K 880
430
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.3
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
140
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 18 to 37
18
Strength to Weight: Bending, points 25 to 41
17
Thermal Shock Resistance, points 8.3 to 17
16

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.1 to 0.35
17 to 20
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
0 to 3.0
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
17 to 20
Nickel (Ni), % 0
54.9 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0