MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. Nickel 625

7020 aluminum belongs to the aluminum alloys classification, while nickel 625 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.4 to 14
33 to 34
Fatigue Strength, MPa 110 to 130
240 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 110 to 230
530 to 600
Tensile Strength: Ultimate (UTS), MPa 190 to 390
790 to 910
Tensile Strength: Yield (Proof), MPa 120 to 310
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 610
1290
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 8.3
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
260 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 18 to 37
26 to 29
Strength to Weight: Bending, points 25 to 41
22 to 24
Thermal Diffusivity, mm2/s 59
2.9
Thermal Shock Resistance, points 8.3 to 17
22 to 25

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0 to 0.4
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.1 to 0.35
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
0 to 5.0
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0 to 0.4
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants