MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. Nickel 685

7020 aluminum belongs to the aluminum alloys classification, while nickel 685 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is nickel 685.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
350
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.4 to 14
17
Fatigue Strength, MPa 110 to 130
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 110 to 230
770
Tensile Strength: Ultimate (UTS), MPa 190 to 390
1250
Tensile Strength: Yield (Proof), MPa 120 to 310
850

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 610
1330
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
190
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
1820
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 18 to 37
42
Strength to Weight: Bending, points 25 to 41
31
Thermal Diffusivity, mm2/s 59
3.3
Thermal Shock Resistance, points 8.3 to 17
37

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0.1 to 0.35
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.4
0 to 2.0
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
49.6 to 62.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
2.8 to 3.3
Zinc (Zn), % 4.0 to 5.0
0.020 to 0.12
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0