MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. Nickel 80A

7020 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.4 to 14
22
Fatigue Strength, MPa 110 to 130
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 110 to 230
660
Tensile Strength: Ultimate (UTS), MPa 190 to 390
1040
Tensile Strength: Yield (Proof), MPa 120 to 310
710

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 610
1310
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.3
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
1300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 18 to 37
35
Strength to Weight: Bending, points 25 to 41
27
Thermal Diffusivity, mm2/s 59
2.9
Thermal Shock Resistance, points 8.3 to 17
31

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.1 to 0.35
18 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
0 to 3.0
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.0
Nickel (Ni), % 0
69.4 to 79.7
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
1.8 to 2.7
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0