MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. SAE-AISI 4620 Steel

7020 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4620 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is SAE-AISI 4620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.4 to 14
16 to 27
Fatigue Strength, MPa 110 to 130
260 to 360
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 110 to 230
320 to 420
Tensile Strength: Ultimate (UTS), MPa 190 to 390
490 to 680
Tensile Strength: Yield (Proof), MPa 120 to 310
350 to 550

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 210
410
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
47
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.2
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1150
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
330 to 800
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18 to 37
17 to 24
Strength to Weight: Bending, points 25 to 41
18 to 22
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 8.3 to 17
15 to 20

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0.1 to 0.35
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
96.4 to 97.4
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.35
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants