MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. C70400 Copper-nickel

7020 aluminum belongs to the aluminum alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 190 to 390
300 to 310
Tensile Strength: Yield (Proof), MPa 120 to 310
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 210
210
Melting Completion (Liquidus), °C 650
1120
Melting Onset (Solidus), °C 610
1060
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
64
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
14
Electrical Conductivity: Equal Weight (Specific), % IACS 120
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
38 to 220
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 18 to 37
9.3 to 9.8
Strength to Weight: Bending, points 25 to 41
11 to 12
Thermal Diffusivity, mm2/s 59
18
Thermal Shock Resistance, points 8.3 to 17
10 to 11

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Chromium (Cr), % 0.1 to 0.35
0
Copper (Cu), % 0 to 0.2
89.8 to 93.6
Iron (Fe), % 0 to 0.4
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Silicon (Si), % 0 to 0.35
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0 to 1.0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0
0 to 0.5