MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. N08367 Stainless Steel

7020 aluminum belongs to the aluminum alloys classification, while N08367 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is N08367 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
210
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 8.4 to 14
34
Fatigue Strength, MPa 110 to 130
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 110 to 230
490
Tensile Strength: Ultimate (UTS), MPa 190 to 390
740
Tensile Strength: Yield (Proof), MPa 120 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 18 to 37
25
Strength to Weight: Bending, points 25 to 41
22
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 8.3 to 17
17

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 0.35
20 to 22
Copper (Cu), % 0 to 0.2
0 to 0.75
Iron (Fe), % 0 to 0.4
41.4 to 50.3
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0