MakeItFrom.com
Menu (ESC)

7020 Aluminum vs. R30155 Cobalt

7020 aluminum belongs to the aluminum alloys classification, while R30155 cobalt belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7020 aluminum and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45 to 100
220
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 8.4 to 14
34
Fatigue Strength, MPa 110 to 130
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 110 to 230
570
Tensile Strength: Ultimate (UTS), MPa 190 to 390
850
Tensile Strength: Yield (Proof), MPa 120 to 310
390

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.3
9.7
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 46
230
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 690
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 18 to 37
28
Strength to Weight: Bending, points 25 to 41
24
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 8.3 to 17
21

Alloy Composition

Aluminum (Al), % 91.2 to 94.8
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0.1 to 0.35
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.4
24.3 to 36.2
Magnesium (Mg), % 1.0 to 1.4
0
Manganese (Mn), % 0.050 to 0.5
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.25
0
Residuals, % 0 to 0.15
0