MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. AISI 302B Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while AISI 302B stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is AISI 302B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
45
Fatigue Strength, MPa 150
210
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 270
410
Tensile Strength: Ultimate (UTS), MPa 460
580
Tensile Strength: Yield (Proof), MPa 390
230

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1140
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
21
Strength to Weight: Bending, points 45
20
Thermal Diffusivity, mm2/s 59
4.4
Thermal Shock Resistance, points 20
13

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.050
17 to 19
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.4
65.7 to 73
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
2.0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0