MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. AWS ERNiCrMo-3

7021 aluminum belongs to the aluminum alloys classification, while AWS ERNiCrMo-3 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is AWS ERNiCrMo-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
34
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 460
870

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Melting Completion (Liquidus), °C 630
1480
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
440
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 8.3
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1140
290

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 44
28
Strength to Weight: Bending, points 45
24
Thermal Diffusivity, mm2/s 59
2.8
Thermal Shock Resistance, points 20
25

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.050
20 to 23
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.4
0 to 5.0
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0 to 0.4
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0
0 to 0.5