MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. EN 1.4310 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while EN 1.4310 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
14 to 45
Fatigue Strength, MPa 150
240 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 270
510 to 550
Tensile Strength: Ultimate (UTS), MPa 460
730 to 900
Tensile Strength: Yield (Proof), MPa 390
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1140
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
170 to 830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
26 to 32
Strength to Weight: Bending, points 45
23 to 27
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 20
15 to 18

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.050
16 to 19
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.4
66.4 to 78
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
6.0 to 9.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0