MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. EN 1.4361 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.4
43
Fatigue Strength, MPa 150
220
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 270
440
Tensile Strength: Ultimate (UTS), MPa 460
630
Tensile Strength: Yield (Proof), MPa 390
250

Thermal Properties

Latent Heat of Fusion, J/g 380
350
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 630
1370
Melting Onset (Solidus), °C 510
1330
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1140
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
23
Strength to Weight: Bending, points 45
21
Thermal Diffusivity, mm2/s 59
3.7
Thermal Shock Resistance, points 20
15

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.050
16.5 to 18.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.4
58.7 to 65.8
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0