MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. EN 1.4542 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.4
5.7 to 20
Fatigue Strength, MPa 150
370 to 640
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 270
550 to 860
Tensile Strength: Ultimate (UTS), MPa 460
880 to 1470
Tensile Strength: Yield (Proof), MPa 390
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1140
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
880 to 4360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
31 to 52
Strength to Weight: Bending, points 45
26 to 37
Thermal Diffusivity, mm2/s 59
4.3
Thermal Shock Resistance, points 20
29 to 49

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.050
15 to 17
Copper (Cu), % 0 to 0.25
3.0 to 5.0
Iron (Fe), % 0 to 0.4
69.6 to 79
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0