MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. EN 1.4855 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while EN 1.4855 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is EN 1.4855 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
4.6
Fatigue Strength, MPa 150
120
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 460
500
Tensile Strength: Yield (Proof), MPa 390
250

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1050
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 510
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
5.9
Embodied Energy, MJ/kg 150
85
Embodied Water, L/kg 1140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
19
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
18
Strength to Weight: Bending, points 45
18
Thermal Diffusivity, mm2/s 59
3.7
Thermal Shock Resistance, points 20
11

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.050
23 to 25
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.4
42.6 to 51.9
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
23 to 25
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0