MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. C94300 Bronze

7021 aluminum belongs to the aluminum alloys classification, while C94300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is C94300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
87
Elongation at Break, % 9.4
9.7
Poisson's Ratio 0.32
0.36
Shear Modulus, GPa 26
32
Tensile Strength: Ultimate (UTS), MPa 460
180
Tensile Strength: Yield (Proof), MPa 390
120

Thermal Properties

Latent Heat of Fusion, J/g 380
150
Maximum Temperature: Mechanical, °C 200
110
Melting Completion (Liquidus), °C 630
820
Melting Onset (Solidus), °C 510
760
Specific Heat Capacity, J/kg-K 870
320
Thermal Conductivity, W/m-K 150
63
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.9
9.3
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1140
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
15
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
77
Stiffness to Weight: Axial, points 13
5.2
Stiffness to Weight: Bending, points 47
16
Strength to Weight: Axial, points 44
5.2
Strength to Weight: Bending, points 45
7.4
Thermal Diffusivity, mm2/s 59
21
Thermal Shock Resistance, points 20
7.1

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 0 to 0.25
67 to 72
Iron (Fe), % 0 to 0.4
0 to 0.15
Lead (Pb), % 0
23 to 27
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.25
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0 to 0.8
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0
0 to 1.0