MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. N07750 Nickel

7021 aluminum belongs to the aluminum alloys classification, while N07750 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.4
25
Fatigue Strength, MPa 150
520
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 270
770
Tensile Strength: Ultimate (UTS), MPa 460
1200
Tensile Strength: Yield (Proof), MPa 390
820

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
1770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 44
40
Strength to Weight: Bending, points 45
30
Thermal Diffusivity, mm2/s 59
3.3
Thermal Shock Resistance, points 20
36

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.050
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.4
5.0 to 9.0
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
2.3 to 2.8
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0