MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. S35140 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while S35140 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
34
Fatigue Strength, MPa 150
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 270
460
Tensile Strength: Ultimate (UTS), MPa 460
690
Tensile Strength: Yield (Proof), MPa 390
310

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.3
5.5
Embodied Energy, MJ/kg 150
78
Embodied Water, L/kg 1140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 44
24
Strength to Weight: Bending, points 45
22
Thermal Diffusivity, mm2/s 59
3.7
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.050
20 to 22
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.4
44.1 to 52.7
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
1.0 to 3.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0