MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. S41425 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
17
Fatigue Strength, MPa 150
450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 270
570
Tensile Strength: Ultimate (UTS), MPa 460
920
Tensile Strength: Yield (Proof), MPa 390
750

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
810
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1140
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
1420
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
33
Strength to Weight: Bending, points 45
27
Thermal Diffusivity, mm2/s 59
4.4
Thermal Shock Resistance, points 20
33

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.050
12 to 15
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.4
74 to 81.9
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0