MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. S44625 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while S44625 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.4
22
Fatigue Strength, MPa 150
240
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 270
370
Tensile Strength: Ultimate (UTS), MPa 460
590
Tensile Strength: Yield (Proof), MPa 390
360

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
310
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
21
Strength to Weight: Bending, points 45
20
Thermal Diffusivity, mm2/s 59
4.6
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.050
25 to 27.5
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 0 to 0.4
69.4 to 74.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0