MakeItFrom.com
Menu (ESC)

7021 Aluminum vs. S44700 Stainless Steel

7021 aluminum belongs to the aluminum alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7021 aluminum and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.4
23
Fatigue Strength, MPa 150
300
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
82
Shear Strength, MPa 270
380
Tensile Strength: Ultimate (UTS), MPa 460
600
Tensile Strength: Yield (Proof), MPa 390
450

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1140
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
480
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 44
21
Strength to Weight: Bending, points 45
20
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 90.7 to 93.7
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.050
28 to 30
Copper (Cu), % 0 to 0.25
0 to 0.15
Iron (Fe), % 0 to 0.4
64.9 to 68.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.0 to 6.0
0
Zirconium (Zr), % 0.080 to 0.18
0
Residuals, % 0 to 0.15
0