MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. 380.0 Aluminum

Both 7022 aluminum and 380.0 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
74
Elongation at Break, % 6.3 to 8.0
3.0
Fatigue Strength, MPa 140 to 170
140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
28
Shear Strength, MPa 290 to 320
190
Tensile Strength: Ultimate (UTS), MPa 490 to 540
320
Tensile Strength: Yield (Proof), MPa 390 to 460
160

Thermal Properties

Latent Heat of Fusion, J/g 380
510
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 480
540
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 140
100
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
27
Electrical Conductivity: Equal Weight (Specific), % IACS 65
83

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.5
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1130
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
48
Strength to Weight: Axial, points 47 to 51
31
Strength to Weight: Bending, points 47 to 50
36
Thermal Diffusivity, mm2/s 54
40
Thermal Shock Resistance, points 21 to 23
14

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
79.6 to 89.5
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0.5 to 1.0
3.0 to 4.0
Iron (Fe), % 0 to 0.5
0 to 2.0
Magnesium (Mg), % 2.6 to 3.7
0 to 0.1
Manganese (Mn), % 0.1 to 0.4
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.5
7.5 to 9.5
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
0 to 3.0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5