MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. EN 1.4652 Stainless Steel

7022 aluminum belongs to the aluminum alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 6.3 to 8.0
45
Fatigue Strength, MPa 140 to 170
450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 290 to 320
610
Tensile Strength: Ultimate (UTS), MPa 490 to 540
880
Tensile Strength: Yield (Proof), MPa 390 to 460
490

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140
9.8
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 65
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.5
6.4
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1130
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
340
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 47 to 51
30
Strength to Weight: Bending, points 47 to 50
25
Thermal Diffusivity, mm2/s 54
2.6
Thermal Shock Resistance, points 21 to 23
20

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.1 to 0.3
23 to 25
Copper (Cu), % 0.5 to 1.0
0.3 to 0.6
Iron (Fe), % 0 to 0.5
38.3 to 46.3
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0