MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. EN AC-41000 Aluminum

Both 7022 aluminum and EN AC-41000 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 6.3 to 8.0
4.5
Fatigue Strength, MPa 140 to 170
58 to 71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 490 to 540
170 to 280
Tensile Strength: Yield (Proof), MPa 390 to 460
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 380
420
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 480
630
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 140
170
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
38
Electrical Conductivity: Equal Weight (Specific), % IACS 65
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.5
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
46 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
51
Strength to Weight: Axial, points 47 to 51
18 to 29
Strength to Weight: Bending, points 47 to 50
26 to 35
Thermal Diffusivity, mm2/s 54
69
Thermal Shock Resistance, points 21 to 23
7.8 to 13

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
95.2 to 97.6
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0.5 to 1.0
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.6 to 3.7
0.45 to 0.65
Manganese (Mn), % 0.1 to 0.4
0.3 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.5
1.6 to 2.4
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.050 to 0.2
Zinc (Zn), % 4.3 to 5.2
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants