MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. CR011A Copper

7022 aluminum belongs to the aluminum alloys classification, while CR011A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is CR011A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 6.3 to 8.0
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 490 to 540
220
Tensile Strength: Yield (Proof), MPa 390 to 460
130

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 480
1040
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
390
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
100
Electrical Conductivity: Equal Weight (Specific), % IACS 65
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 2.9
9.0
Embodied Carbon, kg CO2/kg material 8.5
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
29
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
76
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 47 to 51
6.8
Strength to Weight: Bending, points 47 to 50
9.0
Thermal Diffusivity, mm2/s 54
110
Thermal Shock Resistance, points 21 to 23
7.8

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
0
Bismuth (Bi), % 0
0 to 0.00050
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0.5 to 1.0
99.88 to 99.97
Iron (Fe), % 0 to 0.5
0
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0
Oxygen (O), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Silver (Ag), % 0
0.030 to 0.050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0