MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. Nickel 333

7022 aluminum belongs to the aluminum alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 6.3 to 8.0
34
Fatigue Strength, MPa 140 to 170
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 290 to 320
420
Tensile Strength: Ultimate (UTS), MPa 490 to 540
630
Tensile Strength: Yield (Proof), MPa 390 to 460
270

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 65
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.5
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 47 to 51
21
Strength to Weight: Bending, points 47 to 50
19
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 21 to 23
16

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.1 to 0.3
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 0 to 0.5
9.3 to 24.5
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 4.3 to 5.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0