MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. C34200 Brass

7022 aluminum belongs to the aluminum alloys classification, while C34200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is C34200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 6.3 to 8.0
3.0 to 17
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 290 to 320
230 to 360
Tensile Strength: Ultimate (UTS), MPa 490 to 540
370 to 650
Tensile Strength: Yield (Proof), MPa 390 to 460
150 to 420

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 640
910
Melting Onset (Solidus), °C 480
890
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
26
Electrical Conductivity: Equal Weight (Specific), % IACS 65
29

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.5
2.6
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
9.0 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
110 to 870
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 47 to 51
13 to 22
Strength to Weight: Bending, points 47 to 50
14 to 20
Thermal Diffusivity, mm2/s 54
37
Thermal Shock Resistance, points 21 to 23
12 to 22

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
0
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0.5 to 1.0
62 to 65
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
1.5 to 2.5
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
32 to 36.5
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.4