MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. C44300 Brass

7022 aluminum belongs to the aluminum alloys classification, while C44300 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is C44300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 490 to 540
350
Tensile Strength: Yield (Proof), MPa 390 to 460
120

Thermal Properties

Latent Heat of Fusion, J/g 380
180
Maximum Temperature: Mechanical, °C 200
140
Melting Completion (Liquidus), °C 640
940
Melting Onset (Solidus), °C 480
900
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
25
Electrical Conductivity: Equal Weight (Specific), % IACS 65
27

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.5
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1130
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
65
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 47 to 51
12
Strength to Weight: Bending, points 47 to 50
13
Thermal Diffusivity, mm2/s 54
35
Thermal Shock Resistance, points 21 to 23
12

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
0
Arsenic (As), % 0
0.020 to 0.060
Chromium (Cr), % 0.1 to 0.3
0
Copper (Cu), % 0.5 to 1.0
70 to 73
Iron (Fe), % 0 to 0.5
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0
Silicon (Si), % 0 to 0.5
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
25.2 to 29.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.4