MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. C81500 Copper

7022 aluminum belongs to the aluminum alloys classification, while C81500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 6.3 to 8.0
17
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 490 to 540
350
Tensile Strength: Yield (Proof), MPa 390 to 460
280

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 480
1080
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
320
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
82
Electrical Conductivity: Equal Weight (Specific), % IACS 65
83

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.5
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
56
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
330
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 47 to 51
11
Strength to Weight: Bending, points 47 to 50
12
Thermal Diffusivity, mm2/s 54
91
Thermal Shock Resistance, points 21 to 23
12

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
0 to 0.1
Chromium (Cr), % 0.1 to 0.3
0.4 to 1.5
Copper (Cu), % 0.5 to 1.0
97.4 to 99.6
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5