MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. N07776 Nickel

7022 aluminum belongs to the aluminum alloys classification, while N07776 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.3 to 8.0
39
Fatigue Strength, MPa 140 to 170
220
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 26
79
Shear Strength, MPa 290 to 320
470
Tensile Strength: Ultimate (UTS), MPa 490 to 540
700
Tensile Strength: Yield (Proof), MPa 390 to 460
270

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
970
Melting Completion (Liquidus), °C 640
1550
Melting Onset (Solidus), °C 480
1500
Specific Heat Capacity, J/kg-K 870
430
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
85
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 8.5
15
Embodied Energy, MJ/kg 150
210
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 47 to 51
22
Strength to Weight: Bending, points 47 to 50
20
Thermal Shock Resistance, points 21 to 23
20

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
0 to 2.0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 0.3
12 to 22
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 0 to 0.5
0 to 24.5
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 4.3 to 5.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0