MakeItFrom.com
Menu (ESC)

7022 Aluminum vs. S13800 Stainless Steel

7022 aluminum belongs to the aluminum alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7022 aluminum and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.3 to 8.0
11 to 18
Fatigue Strength, MPa 140 to 170
410 to 870
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 290 to 320
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 490 to 540
980 to 1730
Tensile Strength: Yield (Proof), MPa 390 to 460
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
810
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 65
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.5
3.4
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1130
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 40
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 1100 to 1500
1090 to 5490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 47 to 51
35 to 61
Strength to Weight: Bending, points 47 to 50
28 to 41
Thermal Diffusivity, mm2/s 54
4.3
Thermal Shock Resistance, points 21 to 23
33 to 58

Alloy Composition

Aluminum (Al), % 87.9 to 92.4
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.1 to 0.3
12.3 to 13.2
Copper (Cu), % 0.5 to 1.0
0
Iron (Fe), % 0 to 0.5
73.6 to 77.3
Magnesium (Mg), % 2.6 to 3.7
0
Manganese (Mn), % 0.1 to 0.4
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 4.3 to 5.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0