MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. ACI-ASTM CA15M Steel

7049 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA15M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is ACI-ASTM CA15M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
210
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2 to 7.0
20
Fatigue Strength, MPa 160 to 170
330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 510 to 530
690
Tensile Strength: Yield (Proof), MPa 420 to 450
510

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
27
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.1
Embodied Energy, MJ/kg 140
29
Embodied Water, L/kg 1110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
25
Strength to Weight: Bending, points 46 to 47
22
Thermal Diffusivity, mm2/s 51
7.2
Thermal Shock Resistance, points 22 to 23
25

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.1 to 0.22
11.5 to 14
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
82.1 to 88.4
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
0.15 to 1.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.65
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0